
Cross-compiling Open Source

Eero Tamminen
<eero.tamminen@movial.fi>

1



Abstract

What are Make and Autotools? What are the problems with
cross-compiling programs that use GNU Autotools to configure
themselves? How to solve these problems? What other problems
there are?

2



1 AUTOTOOLS AND MAKE

1 Autotools and Make

GNU Autotools:

• Used to configure software for different compilation environments

• Contains many ready made tests for testing compiler tool-chain,
C-library etc. features

• Composed of Autoconf, Automake, Libtool, m4 tools

• Produce ’configure’ script which is shipped with the software

3 / 16



1 AUTOTOOLS AND MAKE

’configure’ scripts:

• Have a standard configuration, build and installation interface

• Produce ’Makefile’ files used byGNU Makeand ’config.h’ file
defining the compilation environment configuration

GNU Make:

• Builds software according to build dependencies and rules speci-
fied in Makefiles

• If compilation and target environment arebothknown, Makefiles
can be written manually

4 / 16



2 PROBLEMS WITH AUTOTOOLS

2 Problems with Autotools

When cross-compiling, ’configure’ scripts either refuse to run, or:

• Compile and run test programs during the program configuration,
which fails because cross-compiled programs cannot be run

• Requiremanuallyexporting environment variables specifying re-
quired configuration values

In addition, ’configure’ scripts configure software for thecompilation
environment,not to thetargetenvironment.

5 / 16



2.1 Consequences 2 PROBLEMS WITH AUTOTOOLS

2.1 Consequences

Because most of Open Source software uses Autotools, most if it is cur-
rently compiled for ARMnativelye.g. using over-clocked Netwinders
and iPAQs...

This is unacceptable if you’re going to automate building and testing of
a whole embedded distribution.

6 / 16



3 OUR SOLUTION

3 Our solution

• Software is cross-compiled on a fast x86 development host

• Building is sandboxed so that ’configure’ scripts find only com-
ponents which will be available on target device

• Test programscreated by ’configure’ script are transferred to and
run on a networked device that hasthe same CPUas the cross-
compilation target and results (output and files) are transfered to
the cross-compilation environment. This is automatic and works
transparentlyfor the ’configure’ scripts

7 / 16



3.1 Requirements 3 OUR SOLUTION

3.1 Requirements

• GNU gcc cross-compilation tool-chains and C-libraries

• A sandbox setup similar to "Linux From Scratch" project

• Networked device with same CPU as the target (for running the
configuration tests and install programs) and a target device (to
test the resulting software)

• NFS, chroot and Ssh with several auxiliary scripts on both the
development host and target device + binfmt_misc trick on the
development host for each of the target CPUs

8 / 16



3.1 Requirements 3 OUR SOLUTION

9 / 16



3.2 Build setup 3 OUR SOLUTION

3.2 Build setup

x86 host

sandbox

target
development

device

SSH+NFS

target
test

device

10 /16



3.3 Advantages 3 OUR SOLUTION

3.3 Advantages

Low level software such as kernel, C-library, Busybox, X11 etc. nat-
urally support cross-compilation "out of the box", but in general con-
figuring software for cross-compilation requires more effort. With our
solution (oncethat is configured), it’s as easy as on desktop. The target
device where the tests are run, can be shared with the whole develop-
ment team.

If there’s enough interest for it, it could be Open Sourced.

11 /16



3.4 Future 3 OUR SOLUTION

3.4 Future

• Multi-user installation

• Replace ssh / sshd with our own remote execution software

• Build system with target software package and root image cre-
ation

• Support for distributed cross-compilation

• Test framework

• IDE integration

12 /16



4 OTHER CROSS-COMPILATION PROBLEMS

4 Other cross-compilation problems

While implementing our solution, we encountered some problems:

• Gcc ARM tool-chain is much less stable than x86 one. ARM ver-
sion of gcc v3.x doesn’t produce working binaries for the whole
system and vanilla gcc v2.95.x versions need patches1 to produce
good ARM code

1Presumably these have been applied to the Skiff tool-chain available from
www.handhelds.org

13 /16



4 OTHER CROSS-COMPILATION PROBLEMS

• Gcc 3.x package builds stdlibc++. This means that dynamically
linked C++ applications depend from the same C-library as gcc.
So you needseparatetool-chain for each of the kernel major ver-
sion, C-library and CPU targetcombination

• X11 has it’s own Imake based build system and you can’t build
X11 in separate pieces such as build tools, server & libraries and
applications. Instead after a configuration change you use “make
World” and rebuild the whole 160MB source tree...

14 /16



5 GREETINGS FROM THE DEVELOPERS

5 Greetings from the developers

“How many billion lines of code you have cross-compiled this week?”

“1GB of RAM makes wonders to your C-compilation times!”

“IDE disks are not designed for this, invest into real hardware and share
the machine with others...”

15 /16



6 REFERENCES

6 References

• Linux From Scratch:
http://www.linuxfromscratch.org/

• GNU build automation software:
http://www.gnu.org/directory/devel/build/

• Autotools documentation:
http://sources.redhat.com/autobook/autobook/autobook_
toc.html

16 /16

http://www.linuxfromscratch.org/
http://www.gnu.org/directory/devel/build/
http://sources.redhat.com/autobook/autobook/autobook_toc.html
http://sources.redhat.com/autobook/autobook/autobook_toc.html

	Autotools and Make
	Problems with Autotools
	Consequences

	Our solution
	Requirements
	Build setup
	Advantages
	Future

	Other cross-compilation problems
	Greetings from the developers
	References

